
On the upper bound of the electronic kinetic energy in terms of density functionals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 7893

(http://iopscience.iop.org/0305-4470/38/36/007)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 03:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/36
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 7893–7899 doi:10.1088/0305-4470/38/36/007

On the upper bound of the electronic kinetic energy in
terms of density functionals

L Delle Site

Max-Planck-Institute for Polymer Research, PO Box 3148, D-55021 Mainz, Germany

Received 10 May 2005, in final form 20 July 2005
Published 23 August 2005
Online at stacks.iop.org/JPhysA/38/7893

Abstract
We propose a simple density-functional expression for the upper bound of
the kinetic energy for electronic systems. Such a functional is valid in the
limit of slowly varying density, its validity outside this regime is discussed by
making a comparison with upper bounds obtained in the previous work. The
advantages of the functional proposed for applications to realistic systems are
briefly discussed.

PACS numbers: 03.65.−w, 71.10.−w, 71.15.Mb

1. Introduction

Kinetic energy functionals of the electron density have been since long a subject of intense
investigation. Starting with the pioneering work of March [1] through the monumental work
of Lieb (see e.g. [2–5]), the aim was to construct functionals which are accurate enough to
properly describe physical and chemical properties and at the same time simple enough to allow
a feasible computation. There has been a period of intense activity around this subject across
the 1970s until the end of the 1980s, during which many interesting results were produced.
After about a decade of lesser activity, the interest in the subject has got a new vigour (see e.g.
the interesting work of Ludeña and co-workers [6–9] and the topical review of March [10]).
The reason of this renewed interest lies in the fact that in the meanwhile novel computational
schemes for quantum calculations, where the kinetic functional plays a key role, have been
developed. Of particular interest is the linear-scaling real-space kinetic energy functional
method, where the kinetic energy is calculated as a functional of the electron density. The
electron wavefunctions are no longer required and for this reason the method is called orbital-
free density-functional theory (OFDFT) (see e.g. [11–16]). Since neither the diagonalization
of the electronic Hamiltonian nor the reciprocal space sampling are required, such techniques
allow for studies of relatively large systems compared to those treatable with the standard
Kohn–Sham based approaches. Moreover, the fact that the calculations are done only in real
space allows for the development of efficient quantum–classical interfaces which in current
research are highly desirable within the emerging multiscale modelling techniques. For this
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reason, we turned our attention to the derivation of a simple and physically well-founded
kinetic functional. We start from the most general polar form of the electron wavefunction
and derive an upper bound which is exact in the limit of slowly varying density; we discuss its
validity beyond such an approximation by comparing our results with those available in the
literature. A first interesting result is that our functional is potentially a better bound compared
to some of those available in the literature and by now well established; it is also universal,
i.e. does not show explicit dependence on N, the number of electrons, differently from most
of those found in the literature. Next, we combine our upper bound with the well-known
lower bound of Lieb and Thirring. By doing so, we conclude that a valid functional is likely
to have the form of a Thomas–Fermi–Weizsacker type (with different constants), where the
multiplicative constant of the Weizsacker term is the only free parameter. To our knowledge,
this is the first time that a universal functional containing a Thomas–Fermi-like term and
the Weizsacker one is obtained within the same derivation, and not by separate schemes.
Moreover, the link we find between the wavefunction phase factor and the kinetic functional
suggests an operative way to estimate the unknown constant.

2. The kinetic energy

Let us consider a system of N electrons in a 3N -dimensional volume �N . The general
N-particle wavefunction in polar form is ψ(r1, r2, . . . , rN) = θ(r1, r2, . . . , rN) eiS(r1,r2,...,rN ),
where θ(r1, r2, . . . , rN) and S(r1, r2, . . . , rN) are real functions in �N . We also require
θ(r1, r2, . . . , rN) to be antisymmetric with respect to any pair permutation, i.e.
θ(r1, r2, . . . , ri , . . . , rj , . . . , rN) = −θ(r1, r2, . . . , rj , . . . , ri , . . . , rN) and S(r1, r2, . . . , rN)

symmetric. In this way, the wavefunction ψ(r1, r2, . . . , rN) is antisymmetric as should be
for a system of fermions. For simplicity, the spin variables are not explicitly considered.
We define the one-electron density ρ(r) in � as ρ(r) = N

∫
�N−1 [θ(r1, . . . , ri−1, ri ,

ri+1, . . . , rN)]2 dr1 · · · dri−1 dri+1 · · · drN , where the index i is arbitrary and can take any
value from 1 to N; for the case i = 1, dri−1 is not considered while for i = N , dri+1 is not
considered. The one-electron density, in turn, satisfies the condition

∫
�

ρ(r) dr = N . We
will use atomic units h̄ = 1, the electron mass m = 1 and the electron charge e = 1. Let us
consider the average kinetic energy for the state ψ :

Tψ = −1

2

∫
�N

ψ∗∇2ψ dNω, (1)

where dNω = �N
i=1 dri and ∇ = ∑N

i=1 ∇i . The expression above can also be written as (see
e.g. [3])

Tψ = 1

2

∫
�N

|∇ψ |2 dNω. (2)

Substituting the expression ψ = θ eiS into equation (2), one obtains

Tψ =
∫

�N

[
θ2|∇S|2

2
+

|∇θ |2
2

]
dNω. (3)

The integrand on the rhs of equation (3) is a 3N -dimensional function; the goal is to reduce it,
as rigorously as possible, to a simple three-dimensional functional of ρ(r).

2.1. Upper bound to |∇S| in the slowly varying density limit

The average over �n of the 3N -dimensional momentum vector of the system is defined as

〈ψ |m|ψ |〉�N =
∫

�N

Im[ψ∗∇ψ] dNω. (4)
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Substituting the polar form of ψ into equation (4), we obtain∫
�N

Im[ψ∗∇ψ] dNω =
∫

�N

[ψ∗∇Sψ] dNω. (5)

Through equation (5) we find the relation 〈ψ |m|ψ〉�N = 〈ψ |∇S|ψ〉�N , which suggests an
interpretation of ∇S as a 3N -dimensional quantum velocity field. Such an interpretation
would not be new, and can be often found in the literature (see e.g. [17–19]), above all in the
context of a fluid dynamics formulation of quantum mechanics [20]. If we interpret ∇S as
a quantum velocity field then, in the limit of ρ(r) being a slowly varying function1, we can
make the following conjecture for the absolute value of ∇S:

〈ψ ||∇S||ψ〉 � 〈ψ |∣∣PFN

∣∣|ψ〉, (6)

which explicitly reads
∫

�N

θ2

∣∣∣∣∣
N∑

i=1

∇iS

∣∣∣∣∣ dNω �
∫

�N

θ2

∣∣∣∣∣
N∑

i=1

PFi

∣∣∣∣∣ dNω. (7)

Here PFN
= ∑N

i PFi
, with PFi

= PF(ri ), where PF(r) is the Fermi momentum, i.e. the
maximum momentum a particle can reach in the limit of slowly varying density. Since
equation (7) must hold for any arbitrary subvolume of �N , we obtain

|∇S| �
∣∣PFN

∣∣, ∀R ∈ �N (8)

and thus

|∇S|2 �
∣∣PFN

∣∣2
, ∀R ∈ �N. (9)

From the inequality (9), we have∫
�N

(ψ∗|∇S|2ψ) dNω �
∫

�N

(
ψ∗∣∣PFN

∣∣2
ψ

)
dNω (10)

or equivalently ∫
�N

θ2|∇S|2 dNω �
∫

�

ρ(r) |PF(r)|2 dr. (11)

The second term on the rhs of equation (11) is obtained in the following way:
∫

�N

(ψ∗|PF|2ψ) dNω =
N∑

i=1

∫
�i

∣∣PFi

∣∣2
dri

∫
�N−1

θ2 dN−1ω =
N∑

i=1

∫
�i

ρ(ri )

N

∣∣PFi

∣∣2
dri . (12)

If we go back to equation (3), since |PF(r)| = CF[ρ(r)]1/3, where CF is a constant, (CF)
2 =

(3π2)2/3 (see footnote 1), we have
∫

�N

θ2 |∇S|2
2

dNω +
∫

�N

1

2

N∑
i=1

|∇iθ |2 dNω �
∫

�

C2
F

2
[ρ(r)]5/3 +

∫
�N

1

2

N∑
i=1

|∇iθ |2 dNω. (13)

1 In this context, the hypothesis of ρ(r) being a slowly varying quantity must be interpreted in the same spirit of the
Thomas–Fermi approximation, i.e. ρ(r) describes a system which can be reasonably approximated by the statistics
of a Fermi uniform electron gas at 0 K. Within this approximation, the Fermi momentum, |PF|, is the maximum value
possible for the single-electron momentum and, according to the Fermi statistics, is proportional to ρ1/3(r). In fact,
in the ground state of the Fermi electron gas, N electrons fill all the states up to the Fermi energy EF. This means that
in the momentum space all the states up to a certain momentum |PF| are occupied, i.e. the Fermi electron gas fills a
sphere in the momentum space of radius |PF| (the Fermi sphere). Within the formalism of the Fermi statistics, it can
be easily proved (see e.g. p. 308 of [21]) that 1

3π2 V |PF|3 = N , i.e. |PF| = [3π2ρ(r)]1/3, under the hypothesis that

ρ(r) does not deviate significantly from a uniform density N
V

.
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In this way, we have determined an upper bound to Tψ , where the first term is written as
a functional of ρ(r). We shall now also reduce the other term into a three-dimensional
expression, possibly as a functional of ρ(r). One may wonder why one should study the phase
factor S for atoms and molecules in their ground states. Indirectly, this work suggests an
unconventional answer; strictly speaking, S = 0 for the ground state of atoms and molecules,
and this would mean that, in principle, the only kinetic functional term is the Weizsacker
term, as discussed by Sears et al [22], Herring [23] and Luo [24]. However in [23, 24] it is
discussed and shown that this result would not be correct and there must be an additional term
to the kinetic energy coming from some angular part of the wavefunction which factorizes,
i.e. something related to a phase factor. At the same time if ψ = θ eiS is a solution, also
ψ∗ = θ e−iS is a solution with the same energy; this also holds for linear combinations of
the two. For atoms and molecules one can always choose, without loss of generality, linear
combinations of ψ and ψ∗ that lead to real wavefunctions. In this case, as it can be verified
by a straightforward calculation, the rhs of equation (13) is still an upper bound to the kinetic
energy.

2.2. Weizsacker and non-local information functional

The term
∫
�N |∇θ |2 dN r = ∑N

i=1

∫
�N |∇iθ |2 dNr is what Sears et al [22] refer to as the

multivariate kinetic functional and can be written as

1

2

N∑
i=1

∫
�N

|∇iθ |2 dNr = 1

8

∫
�

|∇ρ(r)|2
ρ(r)

dr

+
1

8

N∑
i=1

∫
�N

ρ(ri )

N

|∇if (r1, . . . , ri−1, ri+1, . . . , rN/ri )|2
f (r1, . . . , ri−1, ri+1, . . . , rN/ri )

dNr, (14)

where the first term on the rhs is the well-known Weizsacker term and i ∈ [1, N ] with
f (r1, . . . , ri−1, ri+1, . . . , rN/ri ) is proportional to the conditional density, i.e. the probability
density of finding a certain spatial configuration for N − 1 particles once the position of the
ith particle is assigned (see also [25]). Following the work of [22], we can write

1

2

N∑
i=1

∫
�N

|∇iθ |2 dNr = 1

8

∫
�

|∇ρ(r)|2
ρ(r)

dr +
1

8

∫
�

ρ(r)I (r) dr, (15)

where∫
�

ρ(r)I (r) dr =
∫

�

ρ(r)
[∫

�N−1

|∇rf (r2, r3, . . . , rN/r)|2
f (r2, r3, . . . , rN/r)

dr2 dr3 · · · drN

]
dr, (16)

with I (r) being the well-known non-local information functional within Fisher information
theory. An exact expression for I (r) is difficult to find, however, one can note that I (r)
would be equivalent to write in local form some kinetic correlation effects which are usually
considered negligible [7]. Combining the results above with those of the previous section, we
obtain

Tψ � [CF]2

2

∫
�

[ρ(r)]5/3 +
1

8

∫
�

|∇ρ(r)|2
ρ(r)

dr +
1

8

∫
�

ρ(r)I (r) dr. (17)

3. Beyond the slowly varying density regime

In this section, by comparing the result of equation (17) with upper bounds to Tψ available in
the literature, we will discuss the validity of our results for the general case. For simplicity,
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we will neglect the non-local information functional term since, as said before, it represents a
non-relevant correction. Under this hypothesis, equation (17) becomes

Tψ � [CF]2

2

∫
�

[ρ(r)]5/3 +
1

8

∫
�

|∇ρ(r)|2
ρ(r)

dr. (18)

It is encouraging to note that the same functional form for the upper bound, with a slightly
different multiplicative constant for the first term, was conjectured, following arguments
different from ours, by Lieb [4]. March and Young obtained a result similar to ours but
the constant multiplying the

∫
ρ5/3 dr must be determined for each atom [1]. Gazquez and

Robles [26] derived a kinetic energy functional of the form: Tψ = C1
(
1 − C0

N1/3

) ∫
ρ5/3 dr +

1
8

∫ |∇ρ|2
ρ

dr, the same functional was independently proposed by Acharya et al [27]. This
functional has explicit dependence on N, the number of particles, thus it is not universal;
however, in the thermodynamic limit, i.e. N large, it has the same functional form of the
functional we derived (with, again, a slightly different constant for the first term). Moreover,
our result is fully consistent with the estimate of the relative-phase-energy term of Herring
[23] where he concludes that the upper bound must be something which has the same form as
our functional. Even better comparison can be made for the simpler, one-dimensional case;
now the term

∫
ρ5/3 dr in equation (18) becomes

∫
ρ3 dx because in our derivation PF ∼ ρ

in one dimension. The resulting upper limit has the same functional form for Tψ obtained
by Harriman [28] using the special equidensity orbitals (SEDOs) construction for ψ (see
also [29]). Moreover, it represents an upper bound, in the limit of large N, to the rigorous
functional found by March and Young in one dimension: Tψ � const × ∫

ρ3/2 dx +
∫ |∇ρ|2

ρ
dx.

The arguments above, although they do not represent an explicit proof, suggest that the
functional we propose may indeed be a valid upper bound beyond the slowly varying density
approximation. An intuitive argument to support the validity of our hypothesis is the following.
In the slowly varying density regime, our upper bound condition on the momentum of the single
electron is rather ‘large’. In fact, we approximate the momentum of each electron with the
maximum value possible instead of distributing among the N electrons all the states available
from |m| = 0 to |m| = |PF|. By slowly moving from this regime to an intermediate one, for a
large number of particles, despite the fact that PF slowly loses its physical meaning, the upper
bound hypothesis |∇S| � const×ρ1/3 is likely to still hold for an extended range of densities.
Moreover, the larger N, the more extended the range of validity; in the thermodynamic limit,
one can expect such an upper limit to be always valid, as the comparison with the functional
of Gazquez and Robles [26] and of Acharya et al [27] suggests. Interestingly, if this was the
case, we would have found a better upper bound to Tψ compared to that of Zumbach [30]:

Tψ � [1 + CZuN
2/3]

1

8

∫ |∇ρ|2
ρ

dr, CZu = 15(4π)2 3

5

(
1

5

)2/3

, (19)

which was obtained using a SEDOs-like construction of ψ and is considered of general validity,
although its explicit dependence on N makes it non-universal. In fact, as it is discussed by
Pathak and Gadre [31], and also reported by Zumbach [30], by using the Schwartz inequality
and then applying one Sobolev inequality in three dimensions, it is possible to obtain the
following relation:

∫
ρ5/3 dr � CPG × N2/3 1

8

∫ |∇ρ|2
ρ

dr, (20)
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where CPG is a constant (see [31]); if now we compare equation (18) with equation (19) via
equation (20), we obtain

Tψ � [CF]2

2

∫
�

ρ5/3 +
1

8

∫
�

|∇ρ|2
ρ

dr � [1 + CZuN
2/3]

1

8

∫ |∇ρ|2
ρ

dr, (21)

since CPG × C2
F � CZu.

4. Upper and lower bounds for Tψ

An interesting property of our upper bound can be obtained by relating it to the Lieb–Thirring
inequality and the consequent lower bound to Tψ [2, 3, 5, 32, 33]:

Tψ � CLT

2

∫
ρ5/3 dr. (22)

From [3, 32, 33] it follows that C2
F of equation (18) is very close to CLT of equation (22). In

fact, C2
F ≈ 9.57 while CLT ≈ 9.11. Actually Lieb in [3] argues that numerical calculations

improve CLT to 9.578. If we consider C2
F ≈ CLT, then we can write in good approximation

the following relation:

C ×
∫

ρ5/3 dr � Tψ � C ×
∫

ρ5/3 dr +
1

8

∫
�

|∇ρ|2
ρ

dr, (23)

where C is a constant whose value is between that of C2
F

/
2 and CLT/2, thus very close to both.

The implications of equation (23) are very interesting; it suggests that a valid approximation
for Tψ can be written as

Tψ ≈ C ×
∫

ρ5/3 dr + q × 1

8

∫
�

|∇ρ|2
ρ

dr, (24)

where 0 � q � 1, is the only free parameter. A possible way to obtain a first guess for q would
be by estimating ∇S numerically for some simple model systems. However, already at this
stage, equation (24) represents a very interesting result, as it has been previously discussed in
the introduction, in connection with current quantum-based computational schemes.

5. Discussion and conclusions

We have used the polar form of a many-particle electron wavefunction to derive a simple
functional for the kinetic energy. Such a functional represents an upper bound to the true
kinetic energy and it is exact in the limit of slowly varying density. We have discussed its
validity beyond such an approximation by making a comparison with functionals obtained
in the previous work. The novelty of our derivation presents different aspects; we obtain
within the same theoretical framework a kinetic functional containing both a Thomas–Fermi-
like functional and the Weizsacker functional. These are usually determined by following
separate procedures under different physical approximations. This result provides a physical
justification to a highly desirable upper bound functional which was heuristically conjectured
by Lieb [4]. Another advantage is that it does not show explicit dependence on N, differently
from most of the upper bounds available in the literature, and represents a better bound
compared to other well-established functionals. Finally, combined with the Lieb–Thirring
lower bound leads to the conclusion that a valid functional, which can well approximate
the true one, could be determined by simply tuning the multiplicative constant (between 0
and 1) of the Weizsacker term. This result is very interesting above all for applications to



On the upper bound of the electronic kinetic energy in terms of density functionals 7899

condensed matter systems within free orbital density-functional schemes. In fact, it provides
not only a theoretical background to justify the kinetic functional currently employed, but
also a possible procedure to determine new ones. Approaches such as the one shown in this
paper are crucial for the development of computationally efficient and theoretical flexible
quantum mechanical techniques for modern multiscale simulations. As discussed in the
introduction, the computational apparatus is available and new ideas, which can improve the
energy functionals currently available or suggest new ones, are strongly required. In this
respect, our contribution suggests a possible way to proceed.
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